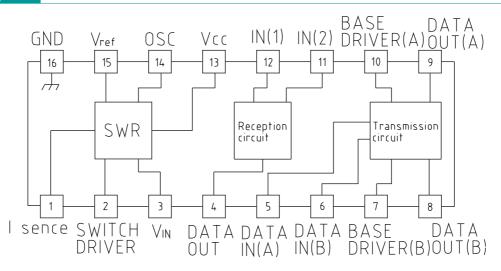
HBS-Compatible Driver and Receiver with Power Supply Monolithic IC MM1034

Outline

This IC conforms to the HBS (Home Bus) specification (Electronic Industries Association of Japan), and has functions for the reception and transmission of data. It incorporates power supply circuitry which employs an efficient switching regulator, and so can draw power directly from the bus line. AMI is adopted for the waveforms of signals handled by the transmission and reception units, designed for connection to twisted-pair lines. Telephone equipment, security devices, audio or video equipment, air-conditioning equipment, and a wide range of other devices can be connected to a bus line to enable mutual communications.

Features

- 1. Compact design
- 2. High reliability
- 3. Replaces pulse transformers
- 4. Low cost
- 5. Adopts highly efficient switching regulator
- 6. Easy circuit design
- 7. Stable internal power supply circuit (Vo1=5 V ± 0.25)
- 8. Few external components


Applications

- 1. Telephony equipment
- 2. Security equipment
- 3. Audio and video devices
- 4. Air-conditioning equipment
- 5. Wide range of other equipment and devices

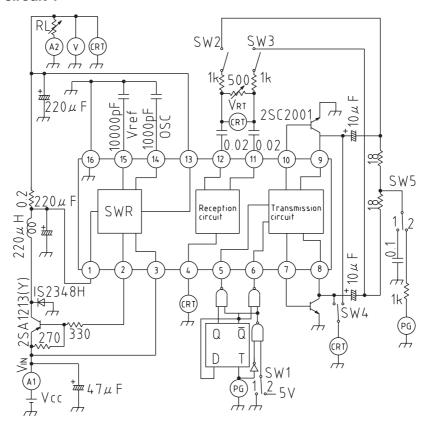
Package

DIP-16A (MM1034XD) SOP-16A (MM1034XF)

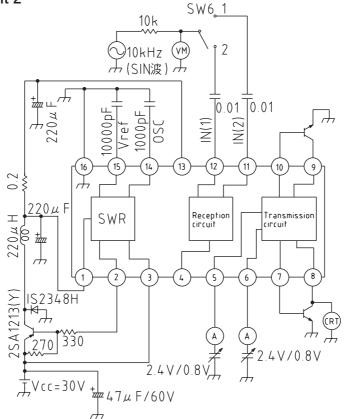
Block diagram

Absolute Maximun Ratings (Ta=25°C)

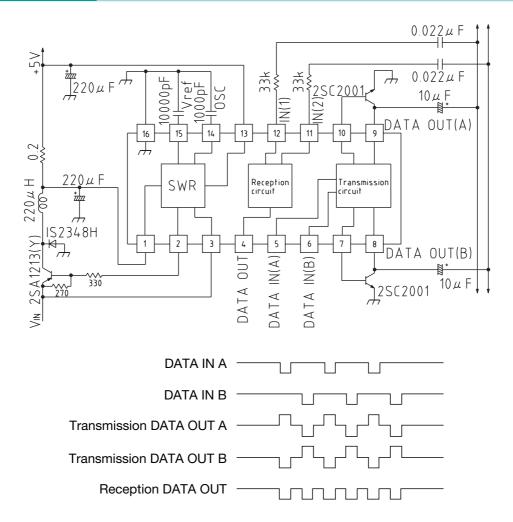
Item	Symbol	Ratings	Units
Storage temperature	Тѕтс	-40~+125	$^{\circ}\!\mathrm{C}$
Operating temperature	Торг	-20~+75	°C
Power supply current	Vcc max.	-0.3~+46	V
Operating power supply voltage	Vссор	13~45	V
Allowable loss	Pd	400	mW


Electrical Characteristics (Except where noted therwise, Ta=25°C, Vcc=30V, Ftransmit=10kHz (DUTY=50%))

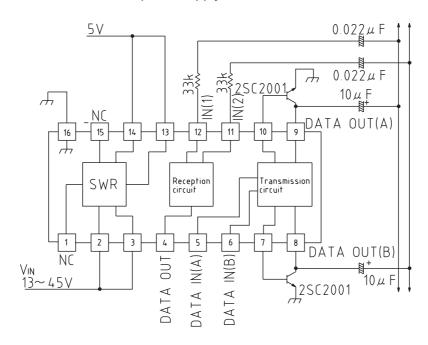
Item		Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Transmission circuit	Output voltage	Vo1	Vcc1=15~45V, IL=0~250mA	4.75	5.00	5.25	V
	Output voltage	Vo2	Vcc1=13~45V, IL=0~250mA	4.70	5.00	5.25	V
	Output voltage	Vo2	Vcc1=11~45V, IL=0~100mA	4.75	5.00	5.25	V
	Output ripple voltage	Vr	I _L =250mA, no spikes			50	mV
	Reactive current	Icco	IL=0mA, transmit unit off		4	6	mA
	SWR transmission	Fosc			80		kHz
	frequency						
	Power supply current	Iss	Rs=0.2Ω		7.5	12	mA
	on short-circuit		J				
	Output current	Ios	Rs= 0.2Ω	70	110	150	mA
	on short-circuit						
	Transmission output voltage	V _{TO}	Both pins 8 and 9	3.8	4.2	4.6	V _{P-P}
	Transmission	V_{TR}	$ m V_{TO}1/V_{TO}2$	0.75	1.0	1.25	
	waveform symmetry	·					
	Reception sensitivity	Vrs		0.65	0.75	0.85	V _{P-P}
	Noise resistance	V _{RN}	Level at which no errors are output	0.55			V _{P-P}
	Input impedance	Rin	Both pins 11 and 12	25	36	46	kΩ
	Transmission delay time 1	Td1	cf. transmit/receive waveform diagrams		0.2		μS
	Transmission delay time 2	Td2	cf. transmit/receive waveform diagrams		0.4		μS
	Transmission delay time 3	Td3	cf. transmit/receive waveform diagrams		0.7		μS
	Transmission delay time 4	Td4	cf. transmit/receive waveform diagrams		1.0		μS
	Reception output H voltage			4.5			V
	Reception output L voltage	Vrol				0.5	V
	Transmission waveform LOSS 1	VTLS	V _T =5V applied, power on	4.5			V
	Transmission waveform LOSS 2	VTLS	applied, power off	4.5			V
	H level input voltage	VLIH		2.4			V
	L level input voltage	VLIL				0.8	V
	H level input current	Ilih	$V_{IN}=2.4V$			10	μA
	L level input current	Ilil	$V_{\rm IN}$ =0.4 V			300	μA


When a negative voltage is applied to pins 8 and 9, there should be no abnormal operation of internal circuits between 0 and 6V. However, if a negative voltage exceeding -6V is applied, thyristor operation may result, so it is recommended that an external clamping diode be added.

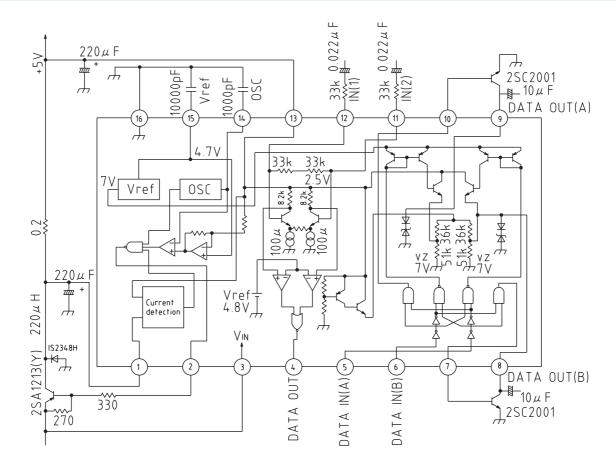
Measuring Circuit


Measurement circuit 1

■ Measurement circuit 2

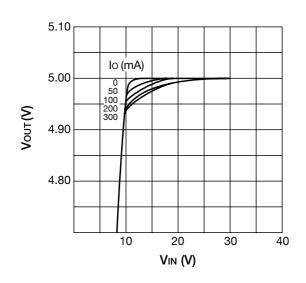


Application Circuits

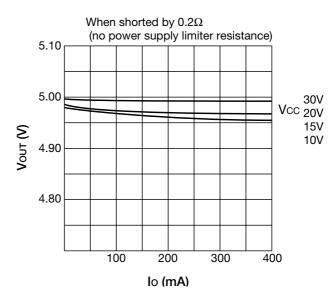


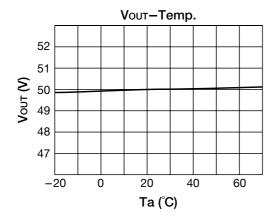
Additional Application Circuits (SWR circuit not used)

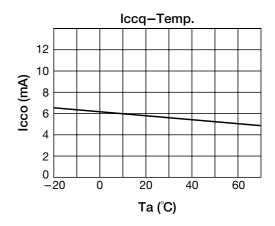
Even when a 5V external voltage can be supplied, an addition voltage of 13 to 45V must be applied to pins 2 and 3 in order to obtain an internal biased power supply of 3.4V.

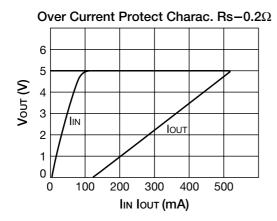


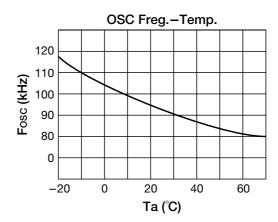
Circuit Diagram




Characteristics


Vout vs. Vin




■ Vout vs. Io

